skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "P. Pakrooh1, L. L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper we revisit a detector first derived by Reed and Yu [1], generalized by Bliss and Parker [2], and recently studied by Hiltunen, Loubaton, and Chevalier [3], [4]. The problem is to detect a known signal transmitted over an unknown MIMO channel of unknown complex gains and unknown additive noise covariance. The probability distribution of a CFAR detector for this problem was first derived for the SIMO channel in [1]. We generalize this distribution for the case of a MIMO channel, and show that the CFAR detector statistic is distributed as the product of independent scalar beta random variables under the null. Our results, based on the theory of beta distributed random matrices, hold for M symbols transmitted from p transmitters and received at L receivers. The asymptotic results of [3], [4] are based on large random matrix theory, which assumes L and M to be unbounded. 
    more » « less